header photo

DR ANTHONY MELVIN CRASTO Ph.D, Helping millions with free academic information, million hits on google

Determined to put information in one place and within easy reach of millions of students, teachers , researchers, academia, industry etc No advertisements and non commercial, purely academic, sites not submitted for advertisement

Photo above is at RJ College, Ghatkopar, Mumbai,India,  chembond, jul 2012anicheck.gif (1995 bytes)

fish spelling out Welcome

To take maximum advantage of the resources on this page, you will need the following:

  

 

Cis Jasmone

http://amcrasto.wix.com/anthony-melvin-crasto/apps/blog/cis-jasmone
copy paste link on browser

Jasmone is a natural organic compound extracted from the volatile portion of the oil fromjasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties.

Jasmone is produced within plants by the metabolism of jasmonate, from linolenic acid by the octadecanoid pathway. It can act as either an attractant or a repellent for various insects. Commercially jasmone is used primarily in perfumes and cosmetics.

An attempt to make Z jasmone – an important constituent of many perfumes

In fact one synthesis uses the following as carbon sources:

cis (Z) jasmone ,

cas no 488-10-8, 3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one

ref-(Can. J. Chem. 1978, Vol 56, p2301)

1    W. Theilheimer. Synthetic Methods of Organic Chemistry. Volume 31, 1977, p. 352 
2   Tetrahedron, 39 (24), p. 4127, 1983

Thomas Koch, Katja Bandemer, Wilhelm Boland (1997). "Biosynthesis of cis-Jasmone: a pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase?". Helvetica Chimica Acta 80 (3): 838–850.doi:10.1002/hlca.19970800318.

Predict NMR spectrum

Formula: C10H14O
CAS#: 488-10-8
MW: 150.22






animated pumpkinrow halloween



fish in a line

CONTACT ME


Thane, india

Loading...
175;175;8b3bbd870987167e2a9a4ced8f65334ff81bae14175;175;a9b7529efb772ff3f621477c0b6564f1257ee629175;175;49e77fd2f710f7bc58676c32f465598a675bea73175;175;0e4dba803d1caa6b57a5b4c5bb8b012fa05f25a9175;175;a022565fabc3a32e66f74c51fc74668e155e6257

Source of anticancer agents---Broccoli

July 1, 2012


Broccoli as a source of anticancer agents

Most of the people are aware of healthy benefits of broccoli but the active constituents which makes broccoli to possess anticancer property may not be well known., The anticancer effect of Selenium (Se)-enriched broccoli will be highlighted according to the work done by researcher from Gunma University, Japan (Abdulah, et al.).

As a member of Se-accumulator Brassica family, broccoli accumulates Se-methylselenocysteine as the major Se compound when it is germinated in Se-enriched media. Therefore, Se-enriched broccoli accumulates two active anticancer agents: sulforaphane and Se-methylselenocysteine. The anticancer property of Sulforaphane, belonging to isothiocyanates and Se-methylselenocysteine has already been reported (Nishikawa, et. al, and Kim et. al. respectively).
Recently, broccoli sprouts have received considerable attention, because they contain ten times more sulforaphane than broccoli florets. Many studies have shown that both cruciferous vegetables and selenium may reduce the incidence of prostate cancer. 
References
1. Abdulah, R., Faried, A., Kobayashi, K., Yamazaki, C., Suradji, E. W., Ito, K., Suzuki, K., Murakami, M., Kuwano, H., Koyama, H. BMC Cancer2009, 9, 414.
2. Kim, T., Jung, U., Cho, D. Y., Chung, A.-S. Carcinogenesis2001, 22, 4, 559-565.
3. Nishikawa, T., Tsuno, N. H., Tsuchiya, T., Yoneyama, S., Yamada, J., Shuno, Y., Okaji, Y., Tanaka, J., Kitayama, J., Takahashi, K., Nagawa, H. Ann Surg Oncol. 2009, 16, 534–543.

Go Back

Comment